Discrimination of MHC-derived odors by untrained mice is consistent with divergence in peptide-binding region residues.

نویسندگان

  • Lara S Carroll
  • Dustin J Penn
  • Wayne K Potts
چکیده

Genes of the major histocompatibility complex (MHC) play a central role in immune recognition, yet they also influence the odor of individuals. Mice can be trained to distinguish odors mediated by classical MHC loci; however, training can introduce confounding behavioral artifacts. This study demonstrates that mice can distinguish some, but not all, naturally occurring allelic variants at classical MHC loci without prior training. This result suggests that MHC-disassortative mating preferences might operate by means of small MHC-based odor differences, and could therefore contribute to diversifying selection acting on MHC loci. Here we show that odors of two MHC mutant mouse strains (bm1 and bm3) can be distinguished, even after genetic background is controlled by intercrossing strains. These two strains differ by five amino acids, three of which are predicted to chemically contact peptides bound to the peptide-binding region (PBR), the site of antigen presentation for T cell recognition. However, the odors of neither bm1 nor bm3 were distinguished from their parental B6 haplotype after randomizing genomic background, despite discrimination of pure-bred B6 and bm1 strain odors. These combined results suggest that (i) there may be an MHC odor discrimination threshold based on divergence in PBR residues, providing a more logical pattern of MHC-based odor discrimination than found in previous training studies, where discrimination ability was not correlated with PBR divergence; and (ii) additional (non-MHC) mutations that influence odor have accumulated in these strains during the 100 generations of divergence between pure B6 and bm1 strains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Major Histocompatibility Complex (MHC) Structure and Peptide Loading into an MHC Binding Pocket with Teachers’Hands

Molecular understanding of three-dimensional (3D) peptide: MHC models require both basic knowledge of computational modeling and skilled visual perception, which are not possessed by all students. The present model aims to simulate MHC molecular structure with the hands and make a profound impression on the students.

متن کامل

Evaluation of 99m Tc-MccJ25 peptide analog in mice bearing B16F10 melanoma tumor as a diagnostic radiotracer

Objective(s): Despite recent advances in treatment modalities, cancer remains a major source of morbidity and mortality throughout the world. Currently, the development of sensitive and specific molecular imaging probes for early diagnosis of cancer is still a problematic challenge. Previous studies have been shown that some of the antimicrobial peptides (AMPs) exhibit...

متن کامل

پیشرفت های جدید در شناخت اسپوندیلوآرتروپاتی ها

In last few years, numerous observations and studies on pathogenesis of spondyloarthropathies have been published and an animal model which confirms the associations of new information is now available. Bacteria which are responsible for reactive arthritis all can remain in the cells for long time. Molecules of class I MHC are able to present the intracellular peptides to immune system. B27 mol...

متن کامل

Induction of cytotoxic T-cell responses against immunoglobulin V region-derived peptides modified at human leukocyte antigen-A2 binding residues.

Cytotoxic T-lymphocyte (CTL) responses can be generated against peptides derived from the immunoglobulin (Ig) V region in some but not all patients. The main reason for this appears to be the low peptide-binding affinity of Ig-derived peptides to major histocompatibility complex (MHC) class I molecules and their resulting low immunogenicity. This might be improved by conservative amino acid mod...

متن کامل

A hairpin turn in a class II MHC-bound peptide orients residues outside the binding groove for T cell recognition.

T cells generally recognize peptide antigens bound to MHC proteins through contacts with residues found within or immediately flanking the seven- to nine-residue sequence accommodated in the MHC peptide-binding groove. However, some T cells require peptide residues outside this region for activation, the structural basis for which is unknown. Here, we have investigated a HIV Gag-specific T cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 4  شماره 

صفحات  -

تاریخ انتشار 2002